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The ervatamine alkaloids1 (19,20-dehydroervatamine,2
ervatamine,2 methuenine,3 and silicine4 ) constitute a
group of 2-acylindole alkaloids with an unusual structure,
in which the tryptamine carbon atoms (C5 and C6)5 are
in a rearranged situation, forming C5-C16 and C6-C16

bonds. Other remarkable features are the presence of a
methoxycarbonyl group at C-16, absent in the methue-
nine-silicine series, a seven-membered C ring included
in a cis-fused6 bicyclic system, and an ethyl or (E)-
ethylidene group at C-20.
The biogenetic pathway to this structural arrangement

probably involves a key intermediate A, formed from a
vobasine N-oxide equivalent as illustrated in Scheme 1,
which would be transformed into 19,20-dehydroervat-
amine by closure of the C ring by cyclization of the
enamine moiety upon the 3-methyleneindoleninium cat-
ion (bond formed C6-C16).7
These alkaloids have received little attention from a

synthetic standpoint: only the total synthesis of (()-6-
oxosilicine has been reported so far.8 Additionally, the
syntheses of several related tetracyclic structures,9 in-
cluding a N(a)-methyl-16-epi-20-epi derivative of ervata-
mine, have been described.8
We present here a synthetic entry to the tetracyclic

ring system of the alkaloids of the ervatamine group
based on a biomimetic cyclization and the first total
synthesis of the alkaloids 19,20-dehydroervatamine and
20-epiervatamine. The C6-C16 seco derivative 8 was
envisaged as the synthetic equivalent of the key bioge-
netic intermediate A as the 3-[(dimethylamino)methyl]-
indole moiety can be considered as a latent 3-methyle-
neindoleninium cation. On the other hand, the func-
tionalized two-carbon appendage on C-20 in the inter-
mediate 8 could be further elaborated into the C-20 ethyl
or ethylidene chain present in the natural products.

The crucial biomimetic intermediate 8 would be pre-
pared taking advantage of the methodology we have
recently developed10 for the synthesis of 4-substituted 1,4-
dihydropyridines bearing two different electron-with-
drawing groups at the â-positions, based on the nucleo-
philic addition of a 2-acetylindole enolate11 to a
3-acylpyridinium salt, with trapping of the initially
formed 1,4-dihydropyridine with trichloroacetic acid an-
hydride (TCAA).12 The application of this methodology
to the synthesis of 8 required the protection of the
nitrogen atom of the starting 2-acetylindole.13 Thus,
reaction of the enolate derived from N-benzylated 2-acetyl-
indole 1with 3-acetylpyridinium salt 2 followed by in situ
treatment with TCAA gave dihydropyridine 3 in 14%
yield (minor amounts of the regioisomeric 3,5-disubsti-
tuted 1,2-dihydropyridine were also detected). A subse-
quent haloform-type reaction of 3 with MeONa in MeOH-
THF afforded dihydropyridine 4 in 91% yield (Scheme
2). Dihydropyridines 3 and 4 were crystalline solids,
stable enough to be fully characterized.14
Stereoselective reduction of the vinylogous amide

moiety of dihydropyridine 4 was achieved by catalytic
hydrogenation in THF-MeOH15 to give the cis-tetrahy-
dropyridine 516 in 45% yield. Deprotection of the indole
ring of 5 with AlCl317 followed by reduction of the ketone
carbonyl groups with LiBEt3H in the resulting N-unsub-
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stituted indole 6 gave a single diol 7 (undetermined
stereochemistry at the benzylic-type carbon) in 54%
overall yield.
The above reduction of the 2-acylindole moiety was

necessary for the success of the subsequent aminomethy-
lation of the indole ring. Thus, treatment of diol 7 with
N,N-dimethylmethyleneimmonium iodide (Eschenmoser’
salt) gave the key intermediate 8, which underwent a
biomimetic cyclization after activation of the dimethy-

lamino group as a methiodide. Further NaCNBH3 re-
duction of the resulting iminium salt 9 followed by MnO2

reoxidation of the benzylic-type hydroxy group gave (()-
19-hydroxy-20-epiervatamine (10) in 25% overall yield
from 7.
The synthesis of (()-19,20-didehydroervatamine (13)

was completed in 70% yield by DBU treatment of the
mesylate 11 derived from alcohol 10. The stereoselective
formation of an (E)-ethylidene double bond in this anti
elimination allowed the relative stereochemistry at C-19
in 7-10 to be established. On the other hand, a radical
reduction of chloride 12, obtained in 71% yield from
alcohol 10 via mesylate 11, gave (()-20-epiervatamine
(14) in 73% yield. Given that 19,20-didehydroervatamine
had been previously converted into ervatamine (15) by
catalytic hydrogenation,2 the above synthesis also con-
stitutes a formal synthesis of the latter alkaloid. The
1H and 13C NMR spectra of our synthetic ervatamines
were identical to those reported18 for the natural prod-
ucts.
The above results not only provide the first synthetic

entry to the C-16 methoxycarbonyl-substituted ervata-
mine alkaloids and present chemical evidence of the
viability of the biogenetic proposal outlined in Scheme 1
but also significantly expand the scope and the potential
of the methodology for indole alkaloid synthesis based
on the reactivity of N-alkyl-3-acylpyridinium salts with
indole-containing enolates.19 After the initial nucleophilic
attack on the γ-position, the intermediate 1,4-dihydro-
pyridine is further functionalized to give a 3,5-diacyl-1,4-
dihydropyridine and then reduced to a tetrahydropyri-
dine,20 ultimately leading to a cis-fused pentasubstituted
piperidine with generation of the C-16 quaternary center.
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Scheme 2a

a Key: (i) LDA, THF, -30 °C, 1.5 h; (ii) TCAA, 0 °C, 3 h; (iii)
MeONa, MeOH-THF, rt, 3 min; (iv) H2, PtO2, MeOH-THF, rt,
10 h; (v) AlCl3, C6H6, rt, 3 h; (vi) LiBEt3H, -70 °C, 45 min; (vii)
Me2N+dCH2 I-, CH2Cl2, rt, 1 h; (viii) ICH3, DMSO, rt, 30 min,
then 70 °C, 4 h; (ix) NaCNBH3, MeOH, rt, 45 min; (x) from 11;
MnO2, CHCl3, rt, 1.5 h; (xi) MsCl, Et3N, 0 °C, 1 h; (xii) LiCl,
acetone, reflux, 1 h; (xiii) DBU, DMSO-toluene, 80-100 °C, 4 h;
(xiv) from 12; n-Bu3SnH, AIBN, C6H6, reflux, 1 h.
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